Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions.

نویسندگان

  • D Fragiadakis
  • C M Roland
  • R Casalini
چکیده

The dielectric spectra of most simple liquids are characterized by two relaxation processes: (i) the alpha-process, an intense, broad non-Debye relaxation with a non-Arrhenius temperature dependence and (ii) a beta process, evident mainly below the glass transition and having nearly Arrhenius temperature behavior. However, the dielectric spectra of monoalcohols show three processes: two that resemble those of normal liquids and a third very intense Debye peak at lower frequencies, which is non-Arrhenius. Interestingly, this third process is not observed with other techniques such as light scattering and mechanical spectroscopy. There is a disagreement in the literature concerning the nature of this third relaxation. We investigated 2-ethyl-1-hexanol under high pressures (up to approximately 1.4 GPa) over a broad range of temperatures. The Debye process, which is the slowest, is strongly affected by pressure. At higher pressures the relaxation times and intensities of the two non-Arrhenius relaxations become more nearly equal. In light of these results, we propose a modified interpretation of the relaxation processes and their underlying structures in monoalcohols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The slow dielectric Debye relaxation of monoalcohols in confined geometries.

Broadband dielectric relaxation measurements have been performed on monoalcohols confined in the quasi-two-dimensional space between clay platelets and the quasi-one-dimensional pores of approximately 10 Å diameter in a molecular sieve. Interestingly, the results show that the slow Debye-like process is present even in these severe confinements, proving that structural models that are based on ...

متن کامل

Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.

Shear-mechanical and dielectric measurements on the two monohydroxy (monoalcohol) molecular glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass-transition temperature are presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge method covering frequencies from 1 mHz to 10 kHz. The shear-mechanical relaxation spectra show two processes, which fol...

متن کامل

On the low frequency loss peak in the dielectric spectrum of glycerol.

We measured dielectric spectra of glycerol at pressures exceeding 1 GPa in order to examine the slow Debye-like peak. This peak is not a relaxation process, but its frequency is consistent with an origin in dielectric discontinuities due to impurities. These heterogeneities have a non-negligible bulk modulus and are identified as volatile, relatively non-polar liquid contaminants. Although this...

متن کامل

Probing the Debye Dielectric Relaxation in Supercooled Methanol

The explanation of the dielectric dynamics in methanol would offer knowledge of the Debye relaxation in supercooled monoalcohols. However, due to the fast crystallization, it is hard to attain the dynamics of pure methanol in the deeply supercooled region. In this paper, we studied the dynamics of methanol – 2-ethyl-1-hexanol mixtures with methanol concentration up to 80 mol% using dielectric a...

متن کامل

Structural, Electrical, and impedance spectroscopy studies of Barium substituted nano calcium ferrites synthesized by solution combustion method.

Barium substituted nanocrystalline ferrites with chemical composition BaxCa1-xFe2O4 (x =0.0 to 0.25) BCAF were prepared by solution combustion method. The phase formation of mixed spinal structured ferrites was confirmed by PXRD analysis. The average crystallite size was calculated using Debye-Scherrer formula and it was found to be in the range of 27-44 nm. Surface morphology was analyzed by S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 14  شماره 

صفحات  -

تاریخ انتشار 2010